
JOURNAL OF AEROSPACE COMPUTING, INFORMATION, AND COMMUNICATION
Vol. 2, December 2005

HiPPO: An Object-Oriented Framework for
General-Purpose Design Optimization

Hongbing Fang∗ and Mark F. Horstemeyer†

Mississippi State University, Mississippi State, MS, 39762

In this article, we present an object-oriented (OO) optimization framework (OF) incor-
porated with a generic optimizer interface (GOI) to bridge the gap between different
optimization problems and existing optimizers. The OF is a general-purpose system inte-
grating different methods of design of experiments, metamodeling, and multi-objective
optimization. By using symbolically defined optimization functions, the OF eliminates the
need for user programming and can solve the same problem with any optimizer in the OF.
The OF is designed with a graphical user interface (GUI), and utilizes the multi-threading
mechanism to overcome the interface-locking problem common to GUI applications. Both
the OF and GOI are designed with the OO concept to achieve high maintainability and
extensibility. This OF has been successfully used in various optimization applications.

I. Introduction

DESIGN optimization has been playing an important role in the fields of aerospace, civil, mechanical, and
other engineering disciplines. Over the years, researchers and engineers have developed various optimization

procedures (optimizers) that were successfully used in solving a wide range of optimization problems. One special
feature of optimization is that this mathematical process involves function evaluations of objectives, constraints, and
their gradients (for gradient-based methods). The objective and constraint functions are problem specific and unknown
to the optimizers that have already been developed. For this reason, it is not uncommon to see that many optimizers
are provided as a procedure rather than a complete system, because recompilations are needed after combining an
optimizer with the user-provided functions typically in the format of computer programs. User programming needs
to conform to the specifications of the optimizer’s application program interface (API). Since different optimizers
typically have different APIs, the user-programming task needs to be repeated if a difficult optimizer is to be used
to solve the same problem. In this situation, an optimizer is not a functional system until it combines with a user-
provided function. Such optimizers have a problem-dependency and are only procedures rather than general-purpose
systems.

With the continuous increase in the complexity of engineering problems, it is often very difficult to obtain the
explicit formulations of objective and constraint functions. In addition, the amount of time for solving such complex
problems is typically huge, even with the aid of supercomputers and parallel processing. For these reasons, the
metamodeling-based optimization approach has been widely adopted, and it has been shown to give reasonably
accurate solutions for many engineering applications if properly used. In the metamodeling approach, a certain
number of designs are pre-chosen using methods from design of experiments (DOE), and the responses at these
design points are obtained through experiments or simulations. The approximate functions of the true responses
are then constructed using metamodeling methods such as the polynomial regression (PR) method1 and radial
basis functions (RBF).2 Such an approximate function is called a metamodel that has a predefined format but

Received 25 May 2005; revision received 25 October 2005; accepted for publication 28 October 2005. Copyright © 2005 by
the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal
or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code 1542-9423/04 $10.00 in correspondence with the CCC.
∗ Assistant Research Professor, Center for Advanced Vehicular Systems, P.O. Box 5405, Member AIAA.
† Professor, Department of Mechanical Engineering, P.O. Box ME.

490

FANG AND HORSTEMEYER

unknown coefficients to be determined by data at the design points. Since all of the functions are in the known
format of the metamodeling method, we can combine metamodeling methods with optimization procedures to
solve the problem-dependency. Such a combination generates an optimization system that does not require user
programming and program recompilation, if all of the optimization functions are created with the metamodeling
methods. We have seen good examples of this approach in commercial software programs such as VisualDoc,3

iSight,4 OptiStruct,5 LS-OPT,6 and PAM-OPT.7 Such systems also provide API for user-defined functions, because
this is needed in many situations. However, when user-defined functions are used through the APIs, these systems
lose their generality.

Many engineering software systems achieve problem-independency by using well-defined formats in describing
a problem. One good example is the finite element analysis (FEA) programs in which all problems are discretized
and represented by nodes, elements, material properties, boundary conditions, and load cases. Changing a problem
only requires changing the problem definition, but does not require changing the FEA system, as long as the problem
to be solved remains within the scope of the FEA program. If we can define any optimization problems symbolically
rather than using coding, and provide a generic interface from which all optimizers can dynamically obtain values
of objective and constraint functions, we can eliminate this problem-dependency.

We define a general-purpose optimization system as one that can perform DOE and metamodeling for problems
whose explicit functions are either unavailable or very expensive to obtain. Such a system also needs to support
problems with user-provided functions, preferably in the same input format as those for the metamodel functions.
Finally, such an optimization system needs to support various existing optimizers so that they can all be used on
a given optimization problem that has been defined. According to the no-free-lunch-theorems for optimization,8

there is no single optimization algorithm that is best for all types of problems. Therefore, the third feature is highly
desirable for a general-purpose optimization system. To achieve this, we need a generic optimizer interface (GOI)
to bridge the unknown optimization problems with the various existing optimizers. With the GOI, all problems are
defined symbolically in the GOI’s format as if there were a single “generic” optimizer; all optimizers can be used
to solve a given problem by obtaining function values through the GOI without knowing the function types. To the
best of the authors’ knowledge, an optimization system with the aforementioned features has not been found in the
literature.

The object-oriented (OO) design concept has been increasingly used in various engineering fields during the past
several years. The OO concept provides clear system designs, expedites system implementation, and increases system
maintainability and extensibility. In this article, we present an OO optimization framework (OF) named HiPPO that
integrates various DOE methods, metamodeling methodologies, and a GOI-based multi-objective optimizer that
can interface with different optimization methods. All these functionalities are provided under HiPPO’s graphical
user interface (GUI). HiPPO was designed with the multi-threading mechanism that not only improves system
performance, but also solves the interface-locking problem commonly found in GUI applications. In the remaining
portion of this article, we first give an overview of a general-purpose optimization system. We then present the
system designs of both the OF and the GOI-based optimizer, followed by details of system implementation. Finally,
we illustrate the functionalities of HiPPO with two optimization problems followed by some conclusions.

II. Overview of a General-Purpose Optimization Framework
We define a general-purpose OF as one that does not require user-programming and program recompilation for

any given optimization problems, that provides DOE and metamodeling capabilities when the optimization functions
do not have explicit forms, and that can solve any given problem using different optimizers without redefining the
problem. Figure 1 shows the overall design of HiPPO as an example of such a general-purpose OF.

There are three major components in HiPPO, DOE, metamodeling, and optimization. These components are
integrated into the OF, but are loosely connected through text files that can be modified if necessary. Loose coupling
between functional modules has the advantage of flexibility and modular independence that allow us to start from
any point within the entire process of design optimization. For example, we can start from the optimization module
if explicit functions are available; otherwise we can start from metamodeling with available or new design samples
to create metamodels.

Another flexibility is that we can create a metamodel using any available metamodeling method for a given set of
design points that may or may not be generated by DOE, though using DOE is recommended. In addition, we can

491

FANG AND HORSTEMEYER

Fig. 1 An example of a general-purpose design optimization framework.

add more design points at a later time to an existing design matrix and create new metamodels. Whether functions
are provided by users or from metamodeling, different optimizers and multi-objective formulations can be applied
to solve the given problem. The functional module “multi-objective optimization” in Fig. 1 actually represents
a GOI-based multi-objective optimizer that integrates multiple optimizers; the GOI-based optimizer is shown in
Fig. 2.

All input functions to the GOI-based optimizer are converted into a standard format called internal function
representation (IFR) for fast evaluation and manipulation. For multi-objective optimization, we can apply different

Fig. 2 The GOI-based multi-objective optimizer.

492

FANG AND HORSTEMEYER

formulations such as weighted sum, global criteria, or nonlinear formulation to the IFRs to form a new objective
function if a single-objective optimizer is to be used. In the optimization system of Fig. 2, the GOI provides a special
interface to each of the optimizers. During the optimization process, when the selected optimizer requests for values
of objectives, constraints, and/or gradients, the generic function evaluation routines in the GOI are called from the
special interface and calculate function values using the IFRs. Note that only the gradient-based optimizers need the
gradient values.

We only need to define a new special interface if a new optimizer is to be added. The new optimizer only interfaces
with the GOI and uses the IFRs; therefore, it can be used to solve any existing and future optimization problems.
The mechanism shown in Fig. 2 successfully bridges the gap between various existing optimizers and different
optimization problems.

III. System Design
In OO design, we combine a certain type of data with the operations for data manipulation to form an entity that

is called an object. This combination is formally referred to as data encapsulation and the prototype for defining such
an object is called a class. For example, the data for defining a two-dimensional rectangle can be the coordinates of its
bottom-left corner and the lengths of two adjacent sides, and the operations can be draw, move, and erase. Another
important feature of OO design is inheritance, which means that a child class can inherit data and/or operations from
its parent class in addition to its own.

System design is a high-level overview of the functionalities, organizations, and relationships of all classes inde-
pendent of the system implementation. In this section, we present design details and the multi-threading mechanism
used in HiPPO. Since the “multi-objective optimization” module in HiPPO is an independent subsystem called the
GOI-based multi-objective optimizer, we also give its system design in Part C of this section.

A. Class Organization of HiPPO
To enhance the clarity of class organization, we put classes either closely related or with similar functionalities

into a collection that is formally called a package. Packages can be organized hierarchically, that is, a package can
have sub-packages. Packages are not indispensable to OO design; however, they provide better system clarity and
protect class visibility. Figure 3 shows the hierarchical organization of packages and classes in HiPPO.

The top-level package HiPPO contains a single class HippoMain, which is the program entry and user interface (UI)
initializer. Package HiPPO has three sub-packages, HiPPO.UserInterface, HiPPO.Utility, and HiPPO.TaskPanels.
Package HiPPO.UserInterface contains classes for defining GUI components such as menus, toolbars, action han-
dlers, etc. The HiPPO.Utility package contains classes that provide matrix manipulation, polynomial functions,
regression methods, radial basis functions, and file input/output utilities. Package HiPPO.TaskPanels contains the
three major components in HiPPO as shown in Fig. 1; they are given in three packages, HiPPO.TaskPanels.DOE,
HiPPO.TaskPanels.MMD, and HiPPO.TaskPanels.OPT for performing DOE, metamodeling, and optimization,
respectively. Package HiPPO.TaskPanels.WRT provides a text editor and is not a key component to HiPPO.

The two classes TaskScheduler and TaskManager schedule and execute tasks in a multi-threading manner; they
will be discussed in detail in Part B of this section. A task is defined as any type of user commands such as opening
a data file, generating a design, creating a metamodel, or performing optimization. Class TaskPanel in Package
HiPPO.TaskPanels is the base class from which a UI panel in each of the four sub-packages is derived. For example,
Class DOEPanel in Package HiPPO.TaskPanels.DOE is derived from Class TaskPanel to provide the UI panel for
DOE. Other classes in the four sub-packages perform the actual tasks. We summarize the functionalities of all classes
in Table 1.

We use the unified modeling language (UML) to describe class relationships;9 such descriptions are typically
organized and given in a class diagram as shown in Fig. 4. Figure 4 only shows the major components in HiPPO due
to limited space. Package HiPPO.TaskPanels.WRT is not shown in Fig. 4; however, it can be described in the same
manner as that for Package HiPPO.TaskPanels.DOE.

In Fig. 4, we represent a class with a rectangle that is divided into three parts, with the top giving the class name,
the middle the data of this class, and the bottom the operations on the data of this class. The solid line linking two
classes indicates class usage, with one pointed to by an arrow using the other one. Note that an arrow is shared
by different pairs of classes if arrows from different pairs point to the same class. For instance, the arrow pointing

493

FANG AND HORSTEMEYER

Fig. 3 Class organization in HiPPO.

to Class TaskPanel is shared by the three classes, DOEPanel, MMDPanel, and OPTPanel. The dotted line between
two classes indicates class inheritance, with one pointed to by the arrow being the base class and the other the derived
class. The arrow on a dotted line can also be shared by different pairs of classes if they all have the same base
class.

The program starts from Class HippoMain in which the UI components such as the menu bar, toolbar, and main
panel are created. Class TaskManager, which is also created in Class HipppoMain, creates the four UI panels (the UI
panel for Package HiPPO.TaskPanels.WRT is not shown in Fig. 4) that are all derived from the base class TaskPanel.
The abstract class Function is the base for all types of functions; both polynomials and radial basis functions are
derived from it. Classes RSM and RBF implement the response surface methodology and radial basis functions,
respectively; they are used in the general metamodeling class MMD that is used in MMDPanel. Classes DOE, OPT,
and Writer are used in the same way as Class MMD.

Once the program starts, it waits for a user command to execute a task. All tasks are queued and executed by the
task scheduler in a multi-threading fashion. As a consequence, the UI is not locked and a new task can be issued by
the user before the existing tasks are finished. Details of multi-threading design are given next.

B. Multi-threading Design in HiPPO
A user program is executed in a process created by the operating system. Without multi-threading, there is only

one flow of execution that uses all the CPU time allocated to the process. This is fine for most computation-intensive
programs but causes problems with interactive programs such as GUI applications. In a GUI application executed in
a single-thread process, when a user command is issued from the UI, the flow of execution is dedicated to fulfill the
task. As a consequence, the UI stops responding until the task is finished. This interface-locking problem definitely
needs to be solved in an integrated OF such as HiPPO, because performing a multi-objective optimization task may
take a long time to finish.

494

FANG AND HORSTEMEYER

Table 1 Functionalities of classes in HiPPO

Package Class Function description

HiPPO HippoMain Program entry for GUI setup
HiPPO.UserInterface MenuBar System menu component

ToolBar System toolbar
StatusBar Task execution status
TextPanel Display of text data
WindowUtility Window style selection
ActionHandler User action capturing and handling
FileChooser File open/save dialogs
FileExtFilter File filters using file extension names
HelpDialog The Help dialog
AboutDialog The About dialog

HiPPO.Utility Function An abstract class defining interface methods for all types of
mathematical functions

FullPolynomial Complete polynomial functions
OrthogonalPolynomial Orthogonal polynomial functions
RadialBasisFunction Radial basis functions
RBFPolynomial Polynomial functions used in radial basis functions
Statistics Statistical analysis on regression functions
Matrix Matrix manipulations
LDLTSolver The matrix LDLT solver
TextFileReader A general-purpose text file reader
TextFileWriter A general-purpose text file writer

HiPPO.TaskPanels TaskManager Management of task threads and task submission
TaskScheduler A scheduler for task execution
TaskPanel An abstract class defining features and interface methods for

all task panels (interfaces)
HiPPO.TaskPanels.DOE DOEPanel Interface panel for design of experiments (DOE)

DOE Class for performing DOE tasks
HiPPO.TaskPanels.MMD MMDPanel Interface panel for metamodeling (MMD)

MMD Class for performing MMD tasks
RBF Metamodeling with radial basis functions (RBF)
RSM Metamodeling with response surface methodology (RSM)

HiPPO.TaskPanels.OPT OPTPanel Interface panel for optimization (OPT)
OPT Class for performing OPT tasks

HiPPO.TaskPanels.WRT WriterPanel Interface panel for a text editor
Writer Class for performing text editing

In simple words, the multi-threading mechanism uses multiple independent flows of executions within a process;
each flow is called a thread. A time-sharing mechanism is adopted among all threads similar to the time-sharing used
by an operating system. In the multi-threading design, we execute user tasks in different threads from that of the
UI. Therefore, the UI can respond and accept more user commands even when there are user tasks being executed.
However, we need to set a limit to the number of threads that can run simultaneously; too many concurrent threads
cause performance degradation. To be able to accept user commands from the UI even when this limit is reached,
we use a queue to store user requests and use a scheduler to execute queued tasks when a thread becomes available.
The design of the multi-threading task manager is shown Fig. 5.

The task manager runs in the main thread of the process; it creates the UI panels in the main thread and a task
scheduler in another separate thread. The task scheduler frequently checks the task queue and executes the tasks in a
first-in-first-out manner if there are available threads. The scheduler goes into sleep mode to save CPU time if there
is no task in the queue or no available thread. If a UI panel receives a user command, it puts the requested task into
the task queue and continues to wait for user input. The UI is never locked in this multi-threading design.

495

FANG AND HORSTEMEYER

Fig. 4 The class diagram for HiPPO.

Fig. 5 The multi-threading design in HiPPO.

496

FANG AND HORSTEMEYER

C. Class Organization of the GOI-based Optimizer
We give a brief overview of the GOI-based optimizer in this article; its detailed design, algorithms, and performance

evaluation are discussed in a separate article.10 The GOI-based optimizer is an object-oriented program for multi-
objective optimization. This standalone system is incorporated into HiPPO and can be started from HiPPO’s UI. We
give the class diagram of this optimizer in Fig. 6. The rectangles with names “Program entry”, “FSQP Solver”, and
“RFSQP Solver” are not classes, but we treat them as classes in Fig. 6 for ease of discussion.

In Fig. 6, “Program entry” is the main function of this GOI-based optimizer. “FSQP Solver” and “RFSQP Solver”
are two existing optimization solvers (also called optimizer) that were developed by Laurence, et al. implementing

Fig. 6 The class diagram for the GOI-based multi-objective optimizer.

497

FANG AND HORSTEMEYER

Table 2 Functionalities of classes and functions in the GOI-based multi-objective
optimizer.

Class/Function Functionality

Main Program entry function
OPTSolver The generic optimizer interface (GOI)
SoverFSQP Specific interface for the FSQP optimizer
SoverRFSQP Specific interface for the RFSQP optimizer
Function Internal function representation (IFR)
Formulation Function formulations using IFRs for multi-objective optimizations
FuncTree Binary tree representation for IFR
FuncNode A node used in class FuncTree
Objective Objective functions and their gradient functions in IFR format
Constraint Constraint functions and their gradient functions in IFR format
Variables Design variables
Stack A base class for all types of stacks
Istack A stack for integers
PStack A stack for pointers
ParetoCheck Obtaining solutions on the Pareto Frontier by Pareto non-dominance check
FSQP Solver Functions of the FSQP optimizer
RFSQP Solver Functions of the RFSQP optimizer

the feasible sequential quadratic programming method.11 Classes SolverFSQP and SolverRFSQP define the special
interfaces to the two optimizers, respectively; both classes are derived from Class OPTSolver that is the major
component of the GOI.

In Class OPTSolver, the four functions GetObjValue, GetObjGrdValue, GetCnstrValue, and GetCnstrGrdValue
are used to obtain values of objectives, objective gradients, constraints, and constraint gradients, respectively. These
four functions provide a generic interface to the optimization problems, because all of the functions are in the IFR
format no matter which optimization solver is actually used (see Fig. 2). On the other hand, the four functions are
also generic to the various optimization solvers, because all of the solvers will call these four functions to obtain
function and gradient values no matter what the optimization problem is. Note that the two functions for calculating
gradients are only needed for gradient-based optimizers.

All input functions are converted into IFR formats given by Class Function. We can form a new objective function
in Class Formulation if a formulation (i.e., weighted sum formulation) is specified for multi-objective optimization.
The input objective functions and their gradients are defined in Class Objective, and the input constraint functions
and their gradients are defined in Class Constraint. Class ParetoCheck performs the Pareto non-dominance check
for multi-objective optimization problems. A summary of class functionalities is given in Table 2.

To add a new optimizer, we can simply derive a class from class OPTSolver to define a new interface (see Fig. 2).
All other components and input functions for existing problems remain unchanged.

IV. System Implementation
There are two commonly used OO programming languages, Java12 and C++;13 both languages can be used to

implement HiPPO and the GOI-based optimizer. Since HiPPO is designed as a GUI application, it is advantageous
to use Java for implementation. Java provides abundant standard classes to support various types of development
including GUI and multi-threading applications, all in a platform independent manner. This platform-independent
GUI is highly desirable, because it allows the application to run on different operating systems such as Unix, Linux,
Mac, and Windows 98/2000/XP without the need of recoding and program recompilation. This feature is not currently
supported in any other programming languages. Based on these reasons, we selected Java to implement HiPPO.

Figure 7 shows the optimization UI of HiPPO running on a Windows XP system. The UIs for DOE and metamod-
eling are similar to that of Fig. 7, except for the displayed contents. The main panel in Fig. 7 displays the output of the
optimizer, the panel at the top-right corner gives the user options for optimization, and the panel at the bottom-right

498

FANG AND HORSTEMEYER

Fig. 7 HiPPO’s user interface for optimization.

corner shows the statuses of all executing tasks. With the multi-threading design, these UIs are not locked at any
time. For example, we can continuously submit multiple optimization tasks in the optimization UI and/or switch to
the UI of DOE or metamodeling to start a new task.

We selected the C++ programming language for implementing the GOI-based optimizer, because using C++
made it easy to interface with existing optimizers that were mostly developed in Fortran, C, and C++. Although Java
can also be used instead of C++, the interfacing with other languages in Java is more complicated. In addition, the
GOI-based optimizer is not a GUI application and will not take advantage of Java’s support for GUI development.
Furthermore, Java’s platform-independent feature is lost when a Java program is combined with other programs
developed in Fortran, C, or C++. Therefore, C++ was a better choice for the GOI-based optimizer. Although the
GOI-based optimizer is not platform independent, a simple recompilation is sufficient before running on a new
system, because it does not require graphics support.

The GOI-based optimizer is a standalone system and can also be started in HiPPO. The output in Fig. 7 is actually
from an optimization task performed by the GOI-based optimizer.

V. Examples of Design Optimization using HiPPO
We use two examples in this section to illustrate how HiPPO and the GOI-based optimizer can be used for

various optimization problems. The first example is a multi-objective optimization problem to improve a vehicle’s
crashworthiness design, while the second example is a widely used benchmark problem.

A. Multi-objective Crashworthiness Optimization
In this simulation-based design optimization problem, we optimized the design of a 1996 Dodge Neon to improve

its crashworthiness in an offset-frontal impact (OFI) and side impact (SI). The finite element model was originally
developed for full-frontal impact simulations at the National Crash Analysis Center in the US.14,15 We modified and
updated the model so that it could be used in OFI and SI, as shown in Figs. 8a and 8b, respectively.

Based on an analysis of the energy absorption histories in both impacts, we selected twenty-one components
and used their thickness as design variables. We only needed 13 design variables due to component symmetry. The
three design objectives are maximizing the energy absorption in OFI, minimizing the intrusion distances in SI, and
minimizing the mass of the selected components. The weighted sum formulation of this multi-objective optimization

499

FANG AND HORSTEMEYER

Fig. 8 Finite element models for offset-frontal and side impacts.

problem is given as

Min F(x) = −W1f1(x) + W2f2(x) + W3f3(x)

s.t. xl
i ≤ xi ≤ xu

i i = 1, 13

Wj > 0,
∑

Wj = 1, j = 1, 3 (1)

where fi(x) (i = 1, 2, 3) is the ith objective function and Wi (i = 1, 2, 3) represents the weight coefficient for the
ith objective. Each weight is greater than zero and the sum of all weights equals one. The negative form of f1(x)

is used, because this function is to be maximized. Larger weights indicate a greater importance of the objective
function, and the optimum design will be relatively closer to the optimum of the objective with a larger weight.

Our first task was to create metamodels for the first two objectives. Due to the extremely high cost of crash
simulations, we selected the Taguchi orthogonal array L27 to do sampling that only requires 27 simulations for 13
design variables.16 The normalized design matrix was generated with HiPPO and given in Appendix A-1 (lines No.
1 to 27 in the matrix). Line No. 0 in the matrix corresponds to the original simulation and is not part of the Taguchi
array. We performed simulations corresponding to each design and the results are also given in Appendix A-1 under
the two columns of f1(x) and f2(x).

With the design matrix and corresponding values of the responses, we created metamodels for the two objectives
using the response surface methodology provided by HiPPO. The generated objective functions and their gradients
were saved in an input file as shown in Appendix A-2. Function f3(x) was not generated in HiPPO, because we knew
its explicit format. The input file also has gradients of all the three functions.

Finally, we solve this multi-objective optimization problem using the GOI-based optimizer with the weighted
sum formulation. In HiPPO, we can simply specify a minimum value for all the weight coefficients and a weight
increment; the GOI-based optimizer automatically computes optima for all combinations of weight coefficients and
generates the Pareto frontier by performing a Pareto non-dominance check. In this example, we used a minimum
weight of 0.01 and a weight increment of 0.002; we obtained 8,327 solutions on the Pareto frontier from a total of
118,341 solutions. An excerpt from the output file of the GOI-based optimizer is given in Appendix A-3.

A final solution is selected from the Pareto optimum set and validated with finite element simulations.17 This solu-
tion represents no change to f1(x), 6% reduction on f2(x), and 14.5% reduction on f3(x). Errors of the metamodels
for f1(x) and f2(x) are only 1.9% and 0.86%, respectively. There is no error on f3(x) because we have the exact
function. Details of optimization results are not discussed here, since that is beyond the scope of this article.

B. An Optimization Benchmark
Our second example is a benchmark problem in which we need to find the minimum of a single objective function

with both equality and inequality constraints. This problem is given as

Min f (x) = 3x1 + 0.000001x3
1 + 2x2 + (0.000002/3) x3

2

s.t. g1(x) = −x4 + x3 − 0.55 ≤ 0

g2(x) = −x3 + x4 − 0.55 ≤ 0

500

FANG AND HORSTEMEYER

h3(x) = 1000 sin (−x3 − 0.25) + 1000 sin (−x4 − 0.25) + 894.8 − x1 = 0

h4(x) = 1000 sin (x3 − 0.25) + 1000 sin (x3 − x4 − 0.25) + 894.8 − x2 = 0

h5(x) = 1000 sin (x4 − 0.25) + 1000 sin (x4 − x3 − 0.25) + 1294.8 − x1 = 0

0 ≤ x1 ≤ 1200, 0 ≤ x2 ≤ 1200, −0.55 ≤ x3 ≤ 0.55, −0.55 ≤ x4 ≤ 0.55 (2)

The best known solution to this problem is x∗ = [679.9453, 1026.067, 0.1188764, −0.3962336] and f (x∗) =
5126.4981.18 We generated the input file for this problem as shown in Appendix A-4 and used HiPPO to solve
this problem; an excerpt from the optimization output is given in Appendix A-5. The results under “OPTIMAL
SOLUTION” in the output have the same values for design variables and objective as those from the literature.

VI. Conclusion
In this study, we developed a general-purpose design optimization framework using the object-oriented design

concept. This framework integrates design of experiments, metamodeling, and multi-objective optimization, all under
a graphical user interface and supported by the multi-threading mechanism. By designing a generic optimizer interface
(GOI) in the multi-objective optimizer, various types of existing optimization routines can be easily incorporated
without the need for major modification. On the other hand, any optimization routines in GOI-based optimizer can
be used to solve arbitrary user-provided optimization problems without the need for user programming and program
recompilation.

This optimization framework has been successfully used in various studies including metamodeling-based design
optimization, accuracy evaluation of metamodeling methods, optimization of benchmark problems, and compari-
son of optimization methods/routines. By incorporating more optimization routines, this framework will be very
useful in evaluating the efficiency and convergence of various optimization methods for single- and multi-objective
optimization using benchmarks and real application problems, both new and already defined for the GOI-based
optimizer.

Appendix
A-1. Design Matrix for the Vehicle Crashworthiness Problem

###
DESIGN OF EXPERIMENTS
HiPPO—High Performance Processing Option
Hongbing Fang, CAVS, Mississippi State University
###
#
TAGUCHI DESIGN
Number of Data Points: 28
Number of Variables: 13
Number of Design Levels: 3
Number of Functions: 3
#
NUM_POINTS NUM_VARS NUM_LEVELS NUM_FUNCS

28 13 3 3
#
#No X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 f1(X) f2(X)
#- -

501

FANG AND HORSTEMEYER

A-2. Optimization Input for the Vehicle Crashworthiness Problem
Number of Variables, Objectives, Inequality and Equality Constraints
#- -
Variables: 13
Objectives: 3
IneqConstraints: 0
EqConstraints: 0
Objective Functions
#- -
f1 = + 3.03 − 0.04*x1 + 0.14*x2 − 1.4*x3 −0.08*x4 + 0.34*x5 + 1.49*x6

+ 0.19*x7 + 0.08*x8 + 0.12*x9 − 0.69*x10 − 0.53*x11 −0.37*x12
+ 0.07*x13 + 0.04*x1ˆ 2 − 0.08*x2ˆ 2 + 1.16*x3ˆ 2 + 0.03*x4ˆ 2
− 0.22*x5ˆ 2 − 0.4*x6ˆ 2 − 0.11*x7ˆ 2 − 0.04*x8ˆ 2− 0.04*x9ˆ 2
+ 0.13*x10ˆ 2 + 0.16*x11ˆ 2 + 0.27*x12ˆ 2 − 0.01*x13ˆ 2;

f2 = + 374.23 − 38.44*x1 + 176.51*x2 + 0.51*x3 − 0.18*x4 −17.43*x5
+ 16.45*x6 − 14.53*x7 −59.75*x8 + 12.94*x9 + 1.51*x10 + 32.24*x11
− 2.11*x12 − 27.55*x13 + 4.51*x1ˆ 2 −97.75*x2ˆ 2 + 0.43*x3ˆ 2
− 1.87*x4ˆ 2 − 14.87*x5ˆ 2 −3.69*x6ˆ 2 + 8.47*x7ˆ 2 + 5.09*x8ˆ 2
− 4.15*x9ˆ 2 − 0.3*x10ˆ 2 −9.84*x11ˆ 2 + 4.31*x12ˆ 2 + 5.3*x13ˆ 2;

f3 = 2*0.004625*x1/0.846 + 2*0.003965*x2/0.827 + 0.004562*x3/0.647
+ 2*0.003466*x4/1.611 + 2*0.001374*x5/0.706 + 0.006665*x6/1.956
+ 0.013140*x7/0.705 + 2*0.011612*x8/0.829 + 2*0.002328*x9/1.524
+ 2*0.003814*x10/1.895 + 2*0.001972*x11/1.522 + 0.00173*x12/0.71
+ 0.004367*x13/2.606;

Gradient Functions of the objectives
#- -

502

FANG AND HORSTEMEYER

gf1 − x1 = − 0.04 + 0.07*x1;
…

gf1 − x13 = + 0.07 − 0.025*x13;
gf2 − x1 = − 38.44 + 9.03*x1;

…
gf2 − x13 = − 27.55 + 10.61*x13;
gf3 − x1 = 2*0.004625/0.846;

…
gf3 − x13 = 0.004367/2.606;
Lower bound, upper bound, and initial values of variables
#- -
0.6345 1.0575 0.7191
0.62025 1.03375 0.70295
0.48525 0.80875 0.54995
1.20825 2.01375 1.36935
0.5295 0.8825 0.6001
1.467 2.445 1.6626
0.52875 0.88125 0.59925
0.62175 1.03625 0.70465
1.143 1.905 1.2954
1.42125 2.36875 1.61075
1.1415 1.9025 1.2937
0.5325 0.8875 0.6035
1.9545 3.2575 2.2151

A-3. Optimization Results for the Vehicle Crashworthiness Problem
###
GimOPT Version 2.2 Copyright 2003-2004
Generic Interfaced Multiobjective Optimizer
###
OPTIMIZER: FSQP (CFSQP V2.5d Copyright 1993-1998)

By C.T. Lawrence, J.L. Zhou, A.L. Tits

INPUT FILE: SIintOFIengMass_qp.fnc
OUTPUT FILE: SIintOFIengMass_qp_6.opt

FORMULATION: Weighted Sum Formulation with changing weight
START POINTS: 100

MINIMUM WEIGHT: 0.010000
WEIGHT INCREMENT: 0.002000
MIN WEIGHT (QUOTA): 5
MAX WEIGHT (QUOTA): 500
ROUND OFF: 0.000000
OBJECTIVE FUNCTIONS: 3
DESIGN VARIABLES: 13
INEQUALITY CONSTRAINTS: 0
EQUALITY CONSTRAINTS: 0

503

FANG AND HORSTEMEYER

INITIAL VALUES
- -
F1 F2 F3 X1 X2 …
- -
3.101339e+00 3.794394e+02 8.226300e-02 7.191000e-01 7.029500e-01 …

INDIVIDUAL OPTIMUM IN SINGLE-OBJECTIVE OPTIMIZATION
- -
F1 F2 F3 X1 X2 …
- -
3.301586e+00 N/A N/A 1.057500e+00 9.602824e-01 …
N/A 3.288625e+02 N/A 1.057500e+00 6.202500e-01 …
N/A N/A 7.937385e-02 6.345000e-01 6.202500e-01 …
TOTAL SOLUTIONS: 118341
DOMINATED SOLUTIONS: 110014
ROUND OFF SOLUTIONS: 0
EFFECTIVE SOLUTIONS: 8327
OPTIMAL SOLUTION SET
- -
F1 F2 F3 X1 X2 …
- -
3.136557e+00 3.704600e+02 7.937456e-02 6.345000e-01 6.202500e-01 …
3.136692e+00 3.704481e+02 7.937464e-02 6.345000e-01 6.202500e-01 …

…
3.225304e+00 3.348122e+02 9.319364e-02 1.057500e+00 6.202500e-01 …
3.225742e+00 3.347218e+02 9.326681e-02 1.057500e+00 6.202500e-01 …
END_OF_OPTIMIZATION

A-4. Optimization Input for the Benchmark Problem
Number of Variables, Objectives, Inequality and Equality Constraints
Variables: 4
Objectives: 1
IneqConstraints: 2
EqConstraints: 3

Objective functions
f1 = 3*x1 + 0.000001*x1ˆ 3 + 2*x2 + (0.000002 / 3)*x2ˆ 3;

Constraint functions
c1 = x3 - x4 - 0.55;
c2 = -x3+x4 - 0.55;
c3 = 1000*sin(-x3 - 0.25) + 1000*sin(-x4 - 0.25) - x1 + 894.8;
c4 = 1000*sin(x3 - 0.25) + 1000*sin(x3 - x4 - 0.25) - x2 + 894.8;
c5 = 1000*sin(x4 - 0.25) + 1000*sin(x4 - x3 - 0.25) + 1294.8;

Gradient functions of the objectives
gf1-x1 = 3 + 0.000003*x1ˆ 2;
gf1-x2 = 2 + 0.000002*x2ˆ 2;
gf1-x3 = 0;
gf1-x4 = 0;

504

FANG AND HORSTEMEYER

Gradient functions of the constraints
gc1-x1 = 0;
gc1-x2 = 0;
gc1-x3 = 1;
gc1-x4 = -1;
gc2-x1 = 0;
gc2-x2 = 0;
gc2-x3 = -1;
gc2-x4 = 1;
gc3-x1 = -1;
gc3-x2 = 0;
gc3-x3 = -1000*cos(-x3 - 0.25);
gc3-x4 = -1000*cos(-x4 - 0.25);
gc4-x1 = 0;
gc4-x2 = -1;
gc4-x3 = 1000*cos(x3 - 0.25) + 1000*cos(x3 - x4 - 0.25);
gc4-x4 = -1000*cos(x3 - x4 - 0.25);
gc5-x1 = 0;
gc5-x2 = 0;
gc5-x3 = -1000*cos(x4 - x3 - 0.25);
gc5-x4 = 1000*cos(x4 - 0.25) + 1000*cos(x4 - x3 - 0.25);

Lower bound, upper bound, and initial values of variables
0 1200 73
0 1200 117
-0.55 0.55 -0.2
-0.55 0.55 0.3
End of Function File

A-5. Optimization Results for the Benchmark Problem
###
GimOPT Version 2.2 Copyright 2003-2004
Generic Interfaced Multiobjective Optimizer
###
OPTIMIZER: FSQP (CFSQP V2.5d Copyright 1993-1998)

By C.T. Lawrence, J.L. Zhou, A.L. Tits

INPUT FILE: C:\G-Suite_Test_Functions\GSuiteTestFunc05.fnc
OUTPUT FILE: C:\G-Suite_Test_Functions\GSuiteTestFunc05_1.opt

FORMULATION: No formulation
START POINTS: 1

MINIMUM WEIGHT: N/A
WEIGHT INCREMENT: N/A
ROUND OFF: N/A

OBJECTIVE FUNCTIONS: 1
DESIGN VARIABLES: 4
INEQUALITY CONSTRAINTS: 2
EQUALITY CONSTRAINTS: 3

505

FANG AND HORSTEMEYER

INITIAL VALUES
- -
F1 X1 X2 X3 X4
- -
4.544568e+002 7.300000e+001 1.170000e+002 -2.000000e-001 3.000000e-001

INDIVIDUAL OPTIMUM IN SINGLE-OBJECTIVE OPTIMIZATION
- -
F1 X1 X2 X3 X4
- -
5.126498e+003 6.799453e+002 1.026067e+003 1.188764e-001 -3.962336e-001

OPTIMAL SOLUTION
- -
F1 X1 X2 X3 X4
- -
5.126498e+003 6.799453e+002 1.026067e+003 1.188764e-001 -3.962336e-001

END_OF_OPTIMIZATION

References
1Montgomery, D. C., Design and Analysis of Experiments, John Wiley & Sons, Inc., New York, 2001, Chaps. 10, 11.
2Hardy, R. L., “Multiquadratic Equations of Topography and Other Irregular Surfaces,” Journal of Geophysics, Vol. 76, 1971,

pp. 1905–1915.
3Balabanov, V. O., Charpentier, C., Ghosh, D., Quinn, G., Vanderplaats, G. N., and Venter, G. “VisualDOC: A Software

System for General-purpose Integration and Design Optimization,” The 9th AIAA/ISSMO on Multidisciplinary Analysis and
Optimization Conference, Atlanta, GA, 2002.

4ISIGHT, Engineering Design Improvement Software, Engineous Software Inc., Morrisville, NC, 2002.
5OptiStruct, Finite Element-based Optimization Tool, Altair Engineering, Troy, MI, 2003.
6Stander, N., Eggleston, T., Craig, K., and Roux, W., “Design Optimization Software for the Engineering Analyst, LS-OPT

User’s Manual,” Livermore Software Technology Corporation, CA, 2003.
7Haug, E., “PAM-OPT Solver-Reference manual,” Pam-System International, MI, 2000.
8Wolpert, D. H. and Macready, W. G., “No Free Lunch Theorems for Optimization,” IEEE Transactions on Evolutionary

Computation, Vol. 1, 1977, pp. 67–82.
9Rumbaugh, J., Jacobson, I., and Booch, G., “The Unified Modeling Language Reference Manual,” 2nd edition, Addison-

Wesley Professional, Boston, MA, 2004.
10Fang, H. and Horstemeyer, M. F., “A Generic Optimizer Interface for Programming-free Optimization Systems,” Advances

in Engineering Software, (to be published).
11Lawrence, C. T., Zhou, J. L., and Tits, A. L., “User’s Guide for CFSQP Version 2.5,” Electrical Engineering Department and

Institute for Systems Research, University of Maryland, College Park, MD, 1997.
12Schildt, H., “Java 2: The Complete Reference,” McGraw-Hill/Osborne Media, Emeryville, CA, 2002.
13Lafore, R., “Object-oriented Programming in C++,” Sams Publishing, Indianapolis, IN, 1999.
14Zaouk, A. K., Marzougui, D., and Bedewi, N. E., “Development of A Detailed Vehicle Finite Element Model, Part I:

Methodology,” International Journal of Crashworthiness, Vol. 5, No. 1, 2000, pp. 25–35.
15Zaouk, A. K., Marzougui, D., and Kan, C. D., “Development of A Detailed Vehicle Finite Element Model, Part II: Material

Characterization and Component Testing,” International Journal of Crashworthiness, Vol. 5, No. 1, 2000, pp. 37–50.
16Taguchi, G., “Taguchi Method—Design of Experiments, Quality Engineering Series Vol. 4,” Japanese Standards Association,

ASI Press, Tokyo, Japan, 1993.
17Fang, H., Solanki, K., and Horstemeyer, M. F., “Numerical Simulations of Multiple Vehicle Crashes and Multidisciplinary

Crashworthiness Optimization,” International Journal of Crashworthiness, Vol. 10, No. 2, 2005, pp. 161–171.
18Koziel, S. and Michalewicz, Z., “Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter

Optimization,” Evolutionary Computation, Vol. 7, No. 1, 1999, pp. 19–44.

506

